DNA-mediated cooperativity facilitates the co-selection of cryptic enhancer sequences by SOX2 and PAX6 transcription factors

نویسندگان

  • Kamesh Narasimhan
  • Shubhadra Pillay
  • Yong-Heng Huang
  • Sriram Jayabal
  • Barath Udayasuryan
  • Veeramohan Veerapandian
  • Prasanna Kolatkar
  • Vlad Cojocaru
  • Konstantin Pervushin
  • Ralf Jauch
چکیده

Sox2 and Pax6 are transcription factors that direct cell fate decision during neurogenesis, yet the mechanism behind how they cooperate on enhancer DNA elements and regulate gene expression is unclear. By systematically interrogating Sox2 and Pax6 interaction on minimal enhancer elements, we found that cooperative DNA recognition relies on combinatorial nucleotide switches and precisely spaced, but cryptic composite DNA motifs. Surprisingly, all tested Sox and Pax paralogs have the capacity to cooperate on such enhancer elements. NMR and molecular modeling reveal very few direct protein-protein interactions between Sox2 and Pax6, suggesting that cooperative binding is mediated by allosteric interactions propagating through DNA structure. Furthermore, we detected and validated several novel sites in the human genome targeted cooperatively by Sox2 and Pax6. Collectively, we demonstrate that Sox-Pax partnerships have the potential to substantially alter DNA target specificities and likely enable the pleiotropic and context-specific action of these cell-lineage specifiers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Examining cooperative binding of Sox2 on DC5 regulatory element upon complex formation with Pax6 through excess electron transfer assay

Functional cooperativity among transcription factors on regulatory genetic elements is pivotal for milestone decision-making in various cellular processes including mammalian development. However, their molecular interaction during the cooperative binding cannot be precisely understood due to lack of efficient tools for the analyses of protein-DNA interaction in the transcription complex. Here,...

متن کامل

Functional analysis of the chicken delta1-crystallin enhancer activity in Drosophila reveals remarkable evolutionary conservation between chicken and fly.

Functional conservation of enhancers among evolutionarily diverged organisms is a powerful way to identify basic regulatory circuits and key developmental regulators. This is especially applicable to Crystallin genes. Despite unexpected heterogeneity and diversity in their DNA sequences, many studies have revealed that most of the Crystallin genes are regulated by a relatively small set of deve...

متن کامل

Cooperative DNA Recognition Modulated by an Interplay between Protein-Protein Interactions and DNA-Mediated Allostery

Highly specific transcriptional regulation depends on the cooperative association of transcription factors into enhanceosomes. Usually, their DNA-binding cooperativity originates from either direct interactions or DNA-mediated allostery. Here, we performed unbiased molecular simulations followed by simulations of protein-DNA unbinding and free energy profiling to study the cooperative DNA recog...

متن کامل

Interplay of Pax6 and SOX2 in lens development as a paradigm of genetic switch mechanisms for cell differentiation.

When the cloning era arrived, our first target for cloning was the delta1-crystallin gene of the chicken, the lens-specific gene expressed earliest following lens induction. We have investigated the regulation of this gene with the idea that the mechanism of its activation must reflect that of lens differentiation per se. We here summarize the investigation carried out in our group along this l...

متن کامل

Cooperative action between L-Maf and Sox2 on δ-crystallin gene expression during chick lens development

Lens development is regulated by a variety of transcription factors with distinct properties. The lens-specific transcription factor, L-Maf, is essential for lens formation and induces lens-specific markers, such as the crystallin genes. In this study, we analyzed the mechanism by which L-Maf regulates delta-crystallin expression. Misexpression of L-Maf in the head ectoderm of lens placode-form...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 43  شماره 

صفحات  -

تاریخ انتشار 2015